Enzymes 6. Cell Respiration 9. Photosynthesis 3: Genetics 1. Genes 2. Chromosomes 3. Meiosis 4. Inheritance 5. Genetic Modification 4: Ecology 1. Energy Flow 3. Carbon Cycling 4. Climate Change 5: Evolution 1. Evolution Evidence 2. Natural Selection 3. Classification 4. Cladistics 6: Human Physiology 1. Digestion 2.
The Blood System 3. Meiosis is a type of cell division that reduces the number of chromosomes in a parent cell by half to produce four reproductive cells called gametes. In humans, diploid cells contain 46 chromosomes, with 23 chromosomes inherited from the mother and a second similar set of 23 chromosomes inherited from the father.
Pairs of similar chromosomes are called homologous chromosomes. During meiosis, the pairs of homologous chromosome are divided in half to form haploid cells, and this separation, or assortment, of homologous chromosomes is random.
This means that all of the maternal chromosomes will not be separated into one cell, while the all paternal chromosomes are separated into another. Instead, after meiosis occurs, each haploid cell contains a mixture of genes from the organism's mother and father. Another feature of of independent assortment is recombination. Recombination occurs during meiosis and is a process that breaks and recombines pieces of DNA to produce new combinations of genes.
These proportions are identical to those obtained using a Punnett square. When more than two genes are being considered, the Punnett-square method becomes unwieldy. It would be extremely cumbersome to manually enter each genotype. For more complex crosses, the forked-line and probability methods are preferred.
To prepare a forked-line diagram for a cross between F 1 heterozygotes resulting from a cross between AABBCC and aabbcc parents, we first create rows equal to the number of genes being considered and then segregate the alleles in each row on forked lines according to the probabilities for individual monohybrid crosses. We then multiply the values along each forked path to obtain the F 2 offspring probabilities.
Note that this process is a diagrammatic version of the product rule. The values along each forked pathway can be multiplied because each gene assorts independently. For a trihybrid cross, the F 2 phenotypic ratio is While the forked-line method is a diagrammatic approach to keeping track of probabilities in a cross, the probability method gives the proportions of offspring expected to exhibit each phenotype or genotype without the added visual assistance.
To fully demonstrate the power of the probability method, however, we can consider specific genetic calculations.
0コメント